ТЕМА

Как работает мозг

06 февраля 2020 | 09:09 , Стивен Пинкер

распечатать        комментарии [0]       добавить в

Ниже - отрывок из книги популяризатора науки Стивена Пинкера. На сколько сложен человек сам по себе. а особенно его мозг, автор пытается объяснить на примере тех задач, которые стоят перед создателями робота, слепленного по образу и подобию человеческому.


 Как сделать робота

Что нужно, чтобы сделать робота? Давайте обойдемся без сверхчеловеческих способностей вроде умения вычислять орбиты планет и начнем с элементарных для человека навыков: умения видеть, ходить, хватать, думать о предметах и людях, планировать свои действия. В фильмах нам часто показывают происходящее глазами робота, используя привычные для кино эффекты: например, вид через линзу «рыбий глаз» или через перекрестие прицела. Для нас, зрителей, у которых есть глаза и мозг, этого вполне достаточно. Но вот самому роботу такой способ восприятия реальности едва ли пригодится. У него внутри нет кинозала, полного маленьких человечков, которые бы смотрели на мир и рассказывали роботу, что они видят. Если бы мы могли видеть мир глазами робота, он бы выглядел вовсе не как кадр из фильма, украшенный крестиком прицела, а как что-то вроде этого1: Каждое число здесь соответствует яркости одного из миллиона крохотных участков, вместе составляющих поле зрения. Числа поменьше соответствуют более темным участкам, а числа побольше – светлым участкам. Эти числа, сгруппированные в виде массива, на самом деле представляют собой сигналы, полученные с цифровой камеры, с помощью которой для пробы сделали снимок руки человека. Однако точно таким же образом можно было бы представить частоту разрядов в нервных волокнах, соединяющих глаз человека с мозгом в тот момент, когда человек смотрит на руку2. Для того чтобы мозг робота – и мозг человека тоже – сумел распознать предметы и не позволил своему владельцу с ними столкнуться, ему нужно обработать эти числа и отгадать, какой предмет в реальном мире мог отразить свет таким образом, чтобы получилась подобная последовательность чисел. Эта задача просто невообразимо сложна. В первую очередь зрительная система должна определить, где заканчивается граница предмета и начинается фон. Но ведь мир – не детская раскраска, где закрашенные фигуры очерчены черным контуром. Мир в том виде, в котором он отражается в наших глазах, представляет собой мозаику из крохотных участков разной степени освещенности. Можно предположить, что зрительные структуры мозга ищут области, где мозаика из больших чисел (более светлый участок) граничит с мозаикой из меньших чисел (более темный участок). Такую границу можно различить и в нашей сетке из чисел: она проходит по диагонали из правого верхнего угла к центру нижней части. К сожалению, в большинстве случаев обнаружить границу предмета с пустым пространством будет непросто. Участки, где большие числа граничат с малыми, могут появляться как следствие очень разных вариантов взаимного расположения объектов. Рисунок, приведенный ниже, предложили психологи Паван Синха и Эдвард Адельсон3. Кажется, что на нем изображено кольцо из светло-серых и темно-серых квадратиков. На самом деле перед нами прямоугольная прорезь в черной маске, через которую мы видим лишь часть изображения. На следующем рисунке маска удалена, и мы можем видеть, что все пары серых квадратиков являются частями разных объектов. Большие числа рядом с малыми могут появляться и в том случае, когда один предмет располагается перед другим. Примерами могут служить темная бумага, лежащая поверх светлой, поверхность, окрашенная в два разных оттенка серого цвета, два предмета, стоящие рядом вплотную друг к другу, серый целлофан, наложенный на белую страницу, угол, соединяющий две стены, а также любая тень. Мозг должен как-то решить эту проблему курицы и яйца: выделить трехмерные объекты из множества затененных участков на сетчатке и определить, что представляет из себя каждый участок (тень или краску, складку или наложение объектов, прозрачную или матовую поверхность), исходя из того, частью какого объекта является этот участок. Однако на этом сложности не заканчиваются. Разделив визуально воспринимаемый мир на объекты, мы должны определить, из чего они сделаны, например, из снега или из угля. На первый взгляд эта задача представляется простой. Если большие числа соответствуют светлым участкам, а малые числа – темным, то большие числа будут означать снег, а малые – уголь, правильно? Нет. Количество света, попадающего на сетчатку глаза, зависит не только от того, насколько светлый или темный перед нами предмет, но и от того, насколько яркий или тусклый свет его освещает. Используемый фотографами прибор – экспонометр – покажет, что кусок угля на улице отражает больше света, чем комок снега в помещении. Именно поэтому люди нередко оказываются недовольны качеством своих снимков, и именно поэтому фотография – очень непростое ремесло. Фотоаппарат никогда не лжет; если предоставить ему возможность действовать без помощи человека, то все снимки, сделанные на улице, будут выглядеть как молоко, а сделанные в помещении – как грязь. Фотографы (а иногда и микропроцессоры, встроенные в фотоаппарат) добиваются от фотопленки реалистичного изображения, прибегая к таким приемам как регулировка скорости срабатывания затвора и диафрагмы объектива, светочувствительность пленки, вспышка и манипуляции в лаборатории. Наша система зрительного восприятия справляется с этой задачей гораздо лучше. Она каким-то образом позволяет нам видеть, что блестящий на солнце уголь на самом деле черный, а кажущийся темным в помещении снег – белый. Это очень удобно, поскольку наше представление о цвете и свете совпадает с тем, каким мир является в действительности, а не с тем, каким он предстает перед глазами. Снег – объект мягкий, влажный и способный таять как в помещении, так и снаружи, и мы видим, что он остается белым независимо от того, в помещении он или снаружи. Уголь всегда твердый, маркий, способный гореть, и мы всегда видим его черным. Получившейся гармонией между тем, как выглядит окружающий мир, и тем, каким он является на самом деле, мы обязаны магии своего мозга: ведь сетчатка глаза не может сама по себе воспринимать черный и белый цвета. А если у вас все еще есть сомнения, вот пример из повседневной жизни. Когда телевизор выключен, экран имеет бледный зеленовато-серый оттенок. Когда телевизор включают, некоторые люминофорные точки начинают светиться, образуя светлые участки изображения, а некоторые другие точки не светятся, образуя темные участки; они остаются серыми. Те части изображения, которые мы видим как черные, на самом деле – все тот же бледно-серый оттенок кинескопа выключенного телевизора. Черный цвет – это фикция, результат работы мозга по той же схеме, благодаря которой мы видим, что уголь – это уголь. Именно эту схему работы использовали создатели телевидения, когда разрабатывали телеэкран. Следующая проблема зрительного восприятия – это глубина. Наши глаза разбивают трехмерный мир на два двухмерных изображения на сетчатке глаз, а третье измерение должен воссоздать мозг. Однако в изображении на сетчатке нет никаких подсказок относительно того, насколько далеко от смотрящего расположен объект. Почтовая марка на вашей ладони оставит на сетчатке такое же квадратное изображение, как стул, стоящий у противоположной стены, или здание, расположенное за много километров от вас (первый рисунок на с. 17). Разделочная доска, если на нее смотреть фронтально, может давать такую же трапециевидную проекцию, как и фигуры неправильной формы, расположенные под углом (второй рисунок на с. 17). Ближе вы можете познакомиться с этим явлением из области геометрии и с нейронным механизмом, который с ним работает, если посмотрите в течение нескольких секунд на электрическую лампочку или на фотоаппарат в момент вспышки: в результате на вашей сетчатке останется световое пятно. Теперь переведите взгляд на страницу книги; у вас перед глазами по-прежнему будет остаточное изображение лампочки шириной 3–5 см. Если вы посмотрите на стену, то остаточное изображение будет около метра в длину. А если посмотрите на небо, то это изображение будет размером с облако4 Наконец, как заставить модуль зрительного восприятия распознавать предметы, чтобы робот мог назвать их или вспомнить их назначение? Очевидным решением было бы построить для каждого объекта маску или шаблон, в точности повторяющий его форму. В таком случае при появлении объекта в поле зрения его проекция на сетчатке идеально совпадала бы с шаблоном. Шаблону присваивается метка с именем данной формы – в нашем случае это метка «Р», – и каждый раз, когда проекция совпадает с шаблоном, система выдает ее имя5: Увы, это простое устройство допускает ошибки в обоих возможных случаях. С одной стороны, оно видит букву Р там, где ее нет: например, реагирует на букву R (первый вариант слева на рисунке внизу). С другой стороны, оно не замечает букву Р там, где она есть: например, если она смещена, наклонена, неровно написана, расположена слишком далеко или слишком близко, либо написана слишком затейливым шрифтом: Столько проблем с распознаванием одной простой и понятной буквы алфавита! А теперь попробуйте представить, как сложно сконструировать устройство, способное распознать рубашку или, скажем, лицо! Конечно, сейчас, после сорока лет исследований в области искусственного интеллекта, технологии распознавания формы значительно улучшились. Вероятно, и у вас есть программное обеспечение, которое может довольно сносно распознать отсканированную страницу и преобразовать ее в цифровой файл. И все же искусственные средства распознавания формы по-прежнему не могут конкурировать с теми, что существуют у нас в голове. Они созданы для среды, где все безупречно и легко узнаваемо, а не для нашего сумбурного, беспорядочного реального мира. Странные цифры, напечатанные в нижней части чека, специально придуманы таким образом, чтобы не иметь даже частичных наложений; специальное оборудование для печати располагает их так, чтобы обеспечить распознование по заданным шаблонам. Когда в подъездах вместо консьержек появятся первые устройства, распознающие лицо, они даже не будут пытаться разгадать хитросплетения света и тени на вашем лице; они будут сканировать четко очерченные контуры радужной оболочки или кровеносные сосуды сетчатки. А вот наш мозг регистрирует форму каждого знакомого нам лица (а также каждой буквы, животного, инструмента и т. д.) и каким-то образом устанавливает ее соответствие с изображением на сетчатке, даже если это изображение искажено любым из рассмотренных выше способов.

Давайте поговорим еще об одном обыкновенном чуде: о том, как наше тело перемещается с одного места на другое. Чтобы заставить машину двигаться, мы поставили ее на колеса. Изобретение колеса нередко называют одним из величайших достижений цивилизации. Во многих учебниках указывается на то, что ни у одного животного в процессе эволюции не сформировались колеса; этот факт называют примером того, что эволюция зачастую неспособна предложить оптимальное решение технической задачи. И все же это неудачный пример. Если бы природа и могла создать лося на колесах, она бы наверняка этой возможностью не воспользовалась. Колеса нужны только в том мире, где есть автомобильные и железные дороги. Они завязнут в мягкой, скользкой или неровной почве. Ноги гораздо лучше. Колеса могут катиться только по непрерывной опоре, в то время как ноги могут наступать поочередно на ряд отдельных опор – наиболее ярким примером этого является лестница. Ноги позволяют своему владельцу поддерживать равновесие и переступать через препятствия. И сегодня, когда наш мир, кажется, превратился в сплошную автопарковку, транспортным средствам с колесами или гусеницами доступна лишь половина земной поверхности. Но есть и другие транспортные средства, которым доступна практически вся поверхность планеты; транспортные средства, созданные путем естественного отбора и передвигающиеся с помощью ног: животные. Правда, ноги просто так не даются: к ним должна прилагаться управляющая ими программа. Колесо, поворачиваясь, изменяет свою точку опоры постепенно и за счет этого может всегда нести вес. Нога должна менять точку опоры сразу, а для этого нужно разгрузить ее. Двигательные нервы, контролирующие движение ноги, должны попеременно то удерживать ногу на земле, когда она несет вес тела, то снимать нагрузку, чтобы нога свободно двигалась. Все это время они должны удерживать центр тяжести тела в пределах многоугольника, определенного ступнями, чтобы тело не опрокинулось. Кроме того, эти органы управления должны минимизировать затратные движения тела вверх-вниз, которые приносят так много неудобств во время верховой езды6. В случае с шагающими заводными игрушками эти проблемы решаются довольно банально: с помощью механического сцепления, которое преобразует движение вращающего вала в шаговое движение. Однако игрушки не могут приспосабливаться к особенностям поверхности, находя идеальную точку опоры. Даже если бы мы решили эти проблемы, мы были бы способны контролировать процесс ходьбы только у насекомого. Насекомое, у которого шесть лапок, поднимая три из них, всегда может держать остальные три на земле. При этом оно в любой момент движения сохраняет устойчивость. Даже четвероногое животное, если оно передвигается не слишком быстро, может все время опираться на землю тремя ногами. Как сказал один инженер, «сама идея передвижения человека вертикально и на двух ногах кажется верным рецептом катастрофы, и ее осуществление на практике требует поразительного контроля над собой»7. Когда мы ходим, мы во время каждого шага на мгновение падаем и тут же останавливаем свое падение. Когда мы бежим, мы на время отрываемся от земли и летим. Эти фигуры высшего пилотажа позволяют нам ставить ноги на точки опоры, размещенные далеко друг от друга или на разных расстояниях и неспособные удерживать наше тело в состоянии покоя, а также проходить по узким тропинкам и перепрыгивать через препятствия. Однако никому еще не удалось точно установить, как мы это делаем. Управление рукой – тоже задача не из легких. Возьмитесь рукой за головку настольной лампы и переместите его по прямой диагонали из положения внизу слева от себя в положение вверху справа. Двигая лампу, обратите внимание на составляющие ее штанги и шарниры. Вы двигаете абажур по прямой линии, однако каждая штанга при этом совершает сложное движение по кривой, в одни моменты оставаясь практически неподвижной, в другие – резко опускаясь, в третьи – вместо сгибательного движения совершая разгибательное. А теперь представьте, что вам нужно повторить это движение в обратном порядке, не глядя на головку, то есть скоординировать ряд движений в каждом месте соединения таким образом, чтобы головка перемещалась по прямой. Тригонометрия этого действия пугающе сложна. А ведь ваша рука – не лампа, и при этом ваш мозг без труда решает эту задачу каждый раз, когда вам нужно на что-то указать. Если же вы когда-нибудь держали такую лампу за зажим, которым она крепится к столу, то вы понимаете, что проблема намного сложнее, чем я только что ее представил. Лампа под собственным весом начинает беспорядочно двигаться, как живая; точно так же двигались бы ваши руки, если бы мозг не компенсировал их вес, ежеминутно решая невообразимо сложные задачи из области физики8. Еще более поразителен процесс управления кистью руки. Почти две тысячи лет назад греческий врач Гален отмечал, насколько сложный процесс конструирования понадобился природе, чтобы создать человеческую кисть. Это единственный инструмент, способный манипулировать объектами, отличающимися на удивление широким разнообразием размеров, форм и веса – от бревна до крупинки проса. «Человек так хорошо берет в руки эти предметы, – отмечал Гален, – что всем покажется, будто руки созданы специально для каждого из них, взятого в отдельности»9. Руку можно сложить в форме крюка (чтобы поднять ведро), ножниц (чтобы держать сигарету), пятикулачкового зажимного патрона (чтобы поднять подставку для стакана), трехкулачкового зажимного патрона (чтобы держать карандаш), двухкулачкового зажимного патрона (чтобы вдеть нитку в иголку), зажима, у которого губка прислоняется к боковой поверхности (чтобы повернуть ключ), захвата (чтобы взять молоток), кругового захвата (чтобы открыть банку) и шарообразного захвата (чтобы взять мячик)10. Для каждой из этих операций требуется напряжение мышц в определенном сочетании, позволяющем руке принять нужную форму и сохранять ее, сопротивляясь давлению груза, который стремится ее разогнуть. Представьте себе, что вы поднимаете пакет молока. Если сжать его недостаточно крепко, то вы его уроните, а если слишком крепко – раздавите; а если слегка покачать пакет, то, чувствуя давление на подушечки пальцев, можно даже определить, сколько в пакете осталось молока! Я даже не говорю о языке – этом бескостном куске студня, контролируемом только путем сжатия и при этом способном доставать остатки пищи из задних зубов и выполнять настоящие пируэты, необходимые для артикуляции таких слов, как «параллелепипед» и «дезоксирибонуклеиновая».

«Обыкновенный человек удивляется чудесам… Мудрый человек удивляется вещам обычным». Держа в голове это изречение Конфуция, посмотрим на повседневные действия человека свежим взором разработчика робота, чья задача – в точности воспроизвести их. Представим, что нам каким-то образом удалось построить робота, который может видеть и двигаться. Как он поймет, что он видит? Как он решит, что ему делать? Разумное существо не может рассматривать каждый объект, который оно видит, как уникальное явление, подобного которому нет нигде во Вселенной. Ему необходимо распределять объекты по категориям таким образом, чтобы можно было применить к конкретному предмету добытые ценой больших усилий знания, полученные в прошлом о подобных объектах. Но как только мы пытаемся запрограммировать совокупность критериев, которая бы позволила охватить всех представителей той или иной категории, категория разрушается. Оставим в стороне такие явно сложные для определения концепты, как «красота» или «диалектический материализм», и возьмем хрестоматийный пример легко определяемого понятия: «холостяк». Понятно, что холостяк – это взрослый человек мужского пола, который никогда не был женат. Но давайте представим, что ваша знакомая просит вас пригласить на ее вечеринку несколько холостяков. Что получится, если вы попробуете с помощью этого определения решить, кого из следующих людей вам пригласить? Артур последние пять лет счастливо живет с Элис. У них есть двухлетняя дочь. Официально они не женаты. Брюса должны были забрать в армию, поэтому он договорился со своей подругой Барбарой заключить фиктивный брак, чтобы получить освобождение от военной службы. Они с Барбарой не прожили вместе и дня. Брюс встречается с несколькими женщинами и и планирует расторгнуть брак сразу, как только найдет девушку, на которой захочет жениться. Чарли 17 лет. Он живет с родителями и учится в школе. Дэвиду 17 лет. Он ушел из дома в 13 и открыл небольшой бизнес. Сейчас является успешным молодым предпринимателем, живет в роскошной квартире в пентхаусе и ведет разгульный образ жизни. Эли и Эдгар – гомосексуальная пара. Они прожили вместе много лет. Файзал по законам своего родного эмирата Абу-Даби может иметь трех жен. Сейчас у него две, и он хотел бы познакомиться с еще одной потенциальной невестой. Отец Грегори – епископ католической церкви, служит в кафедральном соборе в городе Гротон. Список, составленный программистом Терри Виноградом11, показывает, что такое простое определение понятия «холостяк» не отражает наших интуитивных представлений о том, кто входит в эту категорию. Знание о том, кто такой холостяк, относится к области элементарного здравого смысла, но на деле ничего элементарного в этом так называемом здравом смысле нет. Он не может просто так появиться в мозге, будь то мозг человека или робота. И здравый смысл – не какой-то справочник жизни, который можно просто продиктовать или загрузить, как огромную базу данных. Ни одна база данных не может содержать все факты, которые мы знаем автоматически и которым нас никто специально не обучал12. Мы знаем, что если Ирвин посадит собаку в машину, то собака будет уже не на улице. Когда Эдна идет в церковь, то ее голова тоже идет в церковь. Если Дуглас в доме, то он, скорее всего, попал туда через какое-нибудь отверстие (либо он родился в этом доме и никогда из него не выходил). Если Шейла была жива в 9.00 и жива в 17.00, то она была жива и в 12.00. Дикие зебры не носят белье. Если открыть банку с новой маркой арахисового масла, то дом не испарится. Люди не вставляют в уши термометры для мяса. Мышь-песчанка меньше, чем гора Килиманджаро. Итак, в интеллектуальную систему нельзя просто набить миллиарды фактов. Ее нужно снабдить более компактным списком базовых истин и набором правил, которые позволили бы делать из них логические выводы. И все же правила здравого смысла, как и категории здравого смысла, сформулировать чрезвычайно трудно. Даже самые простые из этих правил зачастую противоречат логике привычных нам рассуждений. Мавис живет в Чикаго, у нее есть сын по имени Фред. Милли тоже живет в Чикаго и у нее есть сын Фред. Чикаго, в котором живет Мавис, – тот же город, что и Чикаго, в котором живет Милли, но Фред, который является сыном Мавис, – не тот же самый Фред, который является сыном Милли. Если у вас в машине лежит пакет, а в пакете – литр молока, можно сказать, что у вас в машине – литр молока. Однако если у вас в машине сидит человек, и в его теле литр крови, то заключение, что у вас в машине литр крови, было бы странным. Даже если получится создать совокупность правил, которые позволяют делать только разумные выводы, правильно руководствоваться ими в своих действиях будет не так уж просто. Очевидно, что использовать лишь одно правило за раз будет недостаточно. Спичка дает свет; пилой можно резать дерево; закрытую дверь открывают ключом. В то же время мы посмеемся над человеком, если он зажжет спичку, чтобы заглянуть в цистерну с бензином, если он будет пилить сук, на котором сидит, или если закроет ключи в машине и будет еще целый час думать, как открыть двери. Мыслящее создание должно предугадывать не только непосредственный результат каждого действия, но и его побочные последствия13. С другой стороны, все возможные побочные последствия мозг не может предугадать. Философ Дэниел Деннетт предлагает нам представить робота, задача которого – принести запасной аккумулятор из комнаты, в которой установлена бомба с часовым механизмом. Робот № 1 увидел, что аккумулятор находится на тележке, и если тележку выкатить из комнаты, то вместе с ней выкатится и аккумулятор. К сожалению, бомба тоже была на тележке, и робот не смог вычислить, что вместе с аккумулятором выкатится и бомба. Робот № 2 был запрограммирован таким образом, чтобы предугадывать побочные эффекты своих действий. Он как раз только закончил вычислять, что если вывезти тележку из комнаты, то от этого не изменится цвет стен в комнате, и перешел к доказательству того, что количество оборотов колес при этом превысит количество колес на тележке, когда бомба взорвалась. Робот № 3 был запрограммирован на то, чтобы устанавливать различия между существенными и несущественными последствиями. Когда время в часовом механизме подошло к концу, он по-прежнему стоял и генерировал миллион за миллионом возможных последствий, занося все релевантные последствия в список фактов, которые нужно учесть, а все нерелевантные – в список фактов, которые нужно проигнорировать. Разумное существо логическим путем вычисляет последствия того, что ему известно, но только лишь значимые последствия. Деннетт отмечает, что это требование представляет колоссальную проблему не только с точки зрения робототехники, но и с точки зрения эпистемологии – науки, исследующей знание. Целые поколения философов обошли эту проблему своим вниманием, теша себя иллюзорным представлением о том, что их собственный здравый смысл дается им без всяких усилий. И лишь когда исследователи искусственного интеллекта попытались создать компьютерную копию нашего здравого смысла, исходную tabula rasa, перед ними встала головоломка, ныне известная как «проблема фреймов». И все же мы, люди, каким-то образом решаем проблему фреймов, когда используем свой здравый смысл.



Комментировать статью
Автор*:
Текст*:
Доступно для ввода 800 символов
Проверка*:
 

также читайте

по теме

фототема (архивное фото)

© фото: Noname

Грузинский спецназ в Южной Осетии

   
новости   |   архив   |   фототема   |   редакция   |   RSS

© 2005 - 2007 «ТЕМА»
Перепечатка материалов в полном и сокращенном виде - только с письменного разрешения.
Для интернет-изданий - без ограничений при обязательном условии: указание имени и адреса нашего ресурса (гиперссылка).

Код нашей кнопки:

  Rambler's Top100