Летом 2016 года компания ZeroFOX, работающая в сфере информационной безопасности, обнаружила новый вид Twitter-бота под названием SNAP_R.
Он обманывал пользователей, кликающих по ссылкам, перенаправляя их на сомнительные сайты. Он служил автоматизированной фишинговой системой, которая анализировала модели поведения пользователей социальной сети и выясняла их интересы и потребности. В тот момент, когда ничего не подозревающий пользователь пролистывает ленту новостей, бот подкидывает ему какую-нибудь запись вида «Археологи обнаружили могилу Александра Великого на территории США. Подробности по ссылке goo.gl/KjdQYT».
Бот справлялся с получением кликов по ссылкам ничуть не хуже, чем живые хакеры: 66 % пользователей нажимали на ссылку.
SNAP_R не преследовал никакой вредоносной цели, поскольку представлял собой лишь рабочую концепцию. Но сам факт его существования предупреждает нас еще раз, насколько осторожными нам следует быть в мире фейковой информации.
В это же время два исследователя построили нейросеть, которая способна обучаться на основе анализа больших объемов данных. К примеру, она научилась распознавать изображения с собаками, проанализировав тысячи других изображений. Смогла распознавать устную речь, обучившись на базе данных записей разговоров с технической поддержкой. И, конечно, она вполне может генерировать фишинговые сообщения, анализируя посты в Twitter и Reddit и известные случаи онлайн-атак.
Математические мощности искусственного интеллекта используются сегодня повсеместно во многих сферах — от распознавания речи до перевода текста. Эти же мощности отлично могут работать на обман тысяч интернет-пользователей.
Шахар Авин, исследователь Центра экзистенциальных рисков в Кембриджском университете, настроен отнюдь не оптимистично: «Будет странно, если технологии не будут использованы в мошеннических целях. Всё к этому и идет».
У многих экспертов в сфере технологий серьезные вопросы вызывает искусственный интеллект, который генерирует Deepfakes — сфабрикованный визуальный контент, крайне похожие на настоящий. Инструмент, который когда-то мог лишь подставить изображение головы вашего друга к телу порнозвезды в ролике, теперь умеет беспрепятственно встроить любые изображения и аудио в любое видео.
В апреле ресурс BuzzFeed вместе с комиком Джордано Пилом выпустили фейковое видео, в котором Барак Обама произносит фразу: «Не стоит верить всему, что вы слышите или видите в интернете».
Фальсифицировать контент теперь может каждый
Ученые разрабатывают всё более совершенные системы искусственного интеллекта, которые обучаются на всё больших объемах данных. Нейросети умеют создавать не только изображения, но и аудиоконтент — благодаря этому голосовые помощники вроде Siri сегодня звучат гораздо естественнее, чем несколько лет назад.
Система Google под названием Duplex может за вас позвонить в ближайшее кафе и забронировать столик, а администратор на том конце провода даже не поймет, что с ним разговаривает робот. К концу этого года Duplex будет доступен на смартфонах.
Еще совсем недавно фальсификация аудио- и видеоконтента была привилегией технических специалистов, но уже сейчас это может сделать практически любой человек — настолько простой стала технология генерации цифрового контента.
Вдохновленные культурой открытости и прозрачности, гиганты индустрии вроде Google открыто публикуют результаты своей работы с искусственным интеллектом и выкладывают программный код в открытый доступ.
ИИ овладевает естественными языками
А еще искусственный интеллект учится писать и читать. Долгие годы специалисты этой области задавались вопросом: могут ли машины овладеть естественными языками? И в последние месяцы ответ на него кажется уже не таким однозначным.
И Google, и независимая лаборатория OpenAI разработали свои системы, которые обучаются языкам в самом широком смысле этого слова. Они анализируют огромное количество текстов от статей в «Википедии» до фанфиков, чтобы потом применить полученные знания для решения специфических задач, связанных с языком. К примеру, они могут прочитать абзац текста и ответить на вопросы по его содержанию или определить, положительный или отрицательный отзыв на кинокартину они только что прочитали.
Такие способности пойдут только на руку фишинг-ботам вроде SNAP_R. Пока что большая часть Twitter-ботов ведет себя как боты, но совсем скоро они станут всё больше и больше походить на человека.
Кроме того, развитие технологии может привести к появлению голосовых ботов, которые могут вполне достойно вести осмысленную беседу, — и будьте уверены, они будут способны выудить у вас информацию о кредитной карте.